Hybrid Heuristic Optimization for Benchmark Datasets
نویسندگان
چکیده
منابع مشابه
Hybrid Heuristic Optimization for Benchmark Datasets
This paper introduces hybridization of particle swarm optimization (PSO) with genetic algorithm (GA) denoted as PSO+GA provides an efficient approach which is used to solve non linear chaotic datasets. The proposed algorithm employed in probabilistic neural network(PNN) which is a variant of radial basic function artificial neural network (RBFANN) for finding precise value spread factor for acc...
متن کاملA novel hybrid meta-heuristic technique applied to the well-known benchmark optimization problems
In this paper, a hybrid meta-heuristic algorithm, based on imperialistic competition algorithm (ICA), harmony search (HS), and simulated annealing (SA) is presented. The body of the proposed hybrid algorithm is based on ICA. The proposed hybrid algorithm inherits the advantages of the process of harmony creation in HS algorithm to improve the exploitation phase of the ICA algorithm. In addition...
متن کاملSmart Grid Unit Commitment with Considerations for Pumped Storage Units Using Hybrid GA-Heuristic Optimization Algorithm
A host of technologies has been developed to achieve these aims of the smart grid. Some of these technologies include plug-in electric vehicle, demand response program, energy storage system and renewable distributed generation. However, the integration of the smart grid technologies in the power system operation studies such as economic emission unit commitment problem causes two major challen...
متن کاملTriangle Evolution–A Hybrid Heuristic for Global Optimization
This paper presents a hybrid heuristic–triangle evolution (TE) for global optimization. It is a real coded evolutionary algorithm. As in differential evolution (DE), TE targets each individual in current population and attempts to replace it by a new better individual. However, the way of generating new individuals is different. TE generates new individuals in a NelderMead way, while the simpli...
متن کاملA Hybrid Meta-Heuristic for Multi-Objective Optimization: MOSATS
Real optimization problems often involve not one, but multiple objectives, usually in conflict. In single-objective optimization there exists a global optimum, while in the multi-objective case no optimal solution is clearly defined but rather a set of solutions, called the Pareto-optimal front. Thus, the goal of multi-objective strategies is to generate a set of non-dominated solutions as an a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2016
ISSN: 0975-8887
DOI: 10.5120/ijca2016910853